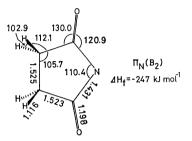
MINDO/3 Prediction of the Π and Σ Electronic States of the Succinimido Radical

Osamu Kikuchi,* Yumiko Sato, and Keizo Suzuki Department of Chemistry, The University of Tsukuba, Sakura-mura, Ibaraki 305 (Received March 25, 1980)

Synopsis. Restricted open-shell SCF MINDO/3 calculation gives the Σ state for the electronic ground state of the succinimido radical.

Recent works on the succinimido radical¹⁾ has yielded a number of interesting characterizations of this radical. One of these is the recognition that two different electronic states of succinimido are being produced in the reactions of N-halosuccinimides, radicals with quite distinctive properties. These are considered to be the Π_N and Σ_N states.²⁾ Succinimido has not been detected by ESR experiment¹⁾ and the theoretical work of this radical is worth being done.

In the simplest nitrogen radical, NH₂, the lone-pair electrons occupy the hybrid σ orbital of nitrogen and an unpaired electron occupies the nitrogen 2p, orbital; the II state is the ground state and the Σ state is an excited one. The ab initio calculation³⁾ gives 113 k] mol⁻¹ for the energy separation between these states; the experimental value is 130 kJ mol⁻¹.3) The same level of the ab initio calculation3) gives 46 kJ mol^{-1} for the $\sum_{N} \Pi_{N}$ energy separation of the formylaminyl (HCONH) radical. In formylaminyl, the carbonyl π^* orbital stabilizes the nitrogen $2p_{\pi}$ electrons, and the Σ - Π energy separation is reduced by the amount of 67 kJ mol⁻¹. In the succinimido radical, two carbonyl groups are introduced at the nitrogen atom, and its Σ - Π separation would be reduced still more; there is the possibility that the ground state of succinimido is of the \sum type.⁴⁾


Koenig and Wielsek⁵⁾ have done the INDO calculation on the succinimido radical and concluded that the II state is the ground state. Their results show that the energy separation between the \sum_N and Π_N states is 159 kJ mol-1. This value is too large and inconsistent with the above qualitative consideration about the Σ - Π energy separation of the nitrogen radicals. We have thus examined the energy separation of succinimido using the MINDO/3 approximation.6) The Σ and II states of succinimido were obtained by repeated diagonalization of the correct general SCF operator which gives the optimum results for the open-shell systems.⁷⁾ The molecular structure was optimized by the use of Fletcher's variable metric method.8) For the NH₂ radical, MINDO/3 gave the satisfactory molecular structures and the Σ - Π energy separation (Table 1). The optimized structures and the calculated heats of formation of succinimido are shown in Fig. 1. The MINDO/3 predicts the Σ ground state for the succinimido radical. This state lies 71 kJ mol⁻¹ below the excited Π state.

Very recently, on the basis of the semi-empirical MNDO calculations, Clark⁹⁾ has well explained the reaction paths for the generation of the Π and Σ states of the succinimido radical from N-halosuccinimides. His MNDO results show that the ground

Table 1. MINDO/3 results on the NH₂ radical

Method	H-N-H angle/°		$E(\Sigma) - E(\Pi)$
	In Π state	In Σ state	kJ mol⁻¹
MINDO/3	102	136	100
STO-3Ga)	101	130	188
4-31Ga)	108	143	113
Experimental ^{a)}	103	144	≈130

a) From Ref. 3.

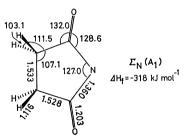


Fig. 1. The molecular structure (C_{2v}) of the II and Σ states of the succinimido radical optimized by the restricted open-shell MINDO/3 method. These C_{2v} structures were also obtained by the geometry optimization in which the distorted (C_s) structures were used as the initial data.

state of succinimido is of Π -type, although the openshell method employed is an approximate one. Since the present MINDO/3 calculation predicts the Σ ground state which is inconsistent with the INDO and MNDO results, another semi-empircal method, the CNDO/BW method¹⁰) which was parametrized by Boyd and Whitehead so as to give better energetics of molecules, was also applied to succinimido. The results obtained are parallel with those of MINDO/3; the Σ state is more stable than the Π state by 41 kJ mol⁻¹.

The characterization of the ground and excited electronic states of the succinimido radical is a key factor for the analysis of the reaction mechanism in which both of the ground and excited states of succinimido are involved. The present MINDO/3 and CNDO/BW results predict the Σ state for the ground state of this radical, while the INDO⁵⁾ and MNDO⁹⁾

calculations have predicted the Π ground state. The Σ - Π separation of succinimido is expected to be very small, and the question, whether Σ or Π is the ground state of this radical, is still open to investigation.

References

- 1) P. S. Skell and J. C. Day, Acc. Chem. Res., 11, 381 (1978).
- 2) The stable Σ_0 structure, in which the unpaired electron locates mostly on one of the oxygen atoms, has also been predicted by INDO calculations. See Ref. 5.
- 3) N. C. Baird and H. B. Kathpal, J. Am. Chem. Soc., **98**, 7532 (1976).

- 4) The possibility of the Σ ground state of succinimido has been suggested by Danen and Neugebauer: W. C. Danen and F. A. Neugebauer, Angew. Chem. Int. Ed., 14, 783 (1975).
- 5) T. Koenig and A. Wielesk, Tetrahedron Lett., 1975, 2007.
- 6) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1285 (1975).
- 7) K. Hirao and H. Nakatsuji, J. Chem. Phys., 59, 1457 (1973).

 - R. Fletcher, Computer J., 13, 317 (1970).
 T. Clark, J. Am. Chem. Soc., 101, 7746 (1979).
- 10) R. J. Boyd and M. A. Whitehead, J. Chem. Soc., Dalton Trans., 1972, 73.